Soil Quality

Modern agriculture relies on regular additions of lime and fertilizer to maintain soil pH and fertility. Solar facilities maintain vegetative ground covers that can help build soil quality over time, which may require lime and fertilizer to be applied. When the vegetation is cut, the organic matter is left in place to decompose which adds valuable organic matter to the soil. A facility operation and maintenance schedule should include a plan for maintenance of sufficient plant groundcover to protect soil from erosion.  Maintaining healthy plant cover will require monitoring of soil fertility and may call for the addition of fertilizer or lime to ensure sufficient nutrients are available for plant growth and that soil pH is adequate. Vegetation mixes may help balance soil nutrient needs, but will need to be managed.  Species composition will change over time.[25] NREL and others are researching and using vegetation mixes that include many native grasses with deep root systems; many include some nitrogen fixing plants as well. According to a study published in July 2016 that measured soil and air microclimate, vegetation and greenhouse gas emissions for twelve months under photovoltaic (PV) arrays, in gaps between PV arrays and in control areas at a UK solar sited on species-rich grassland, UK scientists found no change in soil properties among the three locations.[26]After a solar project is removed, a routine soil test (available from the North Carolina Department of Agriculture) should be obtained to determine fertility requirements, including lime, for optimum crop production.

References
  1. ^ Joseph Hudyncia, North Carolina Department of Agriculture and Consumer Services, personal communication, July 8, 2017.
  2. ^ Alona Armstrong, Nicholas Ostle, Jeanette Whitaker. Solar Park MicroclimateAndVegetation Management Effects On Grassland Carbon Cycling.July 2016. Accessed March 2017. http://iopscience.iop.org/article/10.1088/1748-9326/11/7/074016/pdf
NC State Credit