Soil compaction can negatively impact soil productivity and will occur to some degree on every solar site. Soil compaction can also limit water infiltration into the soil environment, and lead to greater surface water runoff during rain events.[27] In addition to the roads built in and around  solar project sites, the construction of the facility itself as well as regular use of lawn mowers compacts the soil, decreasing the ability of plant roots to grow. However, use of land as a solar site will avoid agriculture-related activities that can induce compaction, such as tillage. There are no data available on the degree of compaction common at solar facilities, but it is possible that some sites could experience heavy compaction in frequently used areas. In cases of heavy compaction, hard pans in the soil will form that can take decades to naturally free up; however, tractor implements such as chisels and vibrators designed to break up hard pan can often remove enough compaction to restore productivity. To prevent damage to soil due to compaction, landowners can negotiate for practices that will result in the least amount of compaction and for roads to be constructed on less productive land. Additionally, maintaining healthy groundcover, especially varieties with deep root systems, can serve to keep the soil arable for potential future agricultural use. The appropriate use of alternative vegetative maintenance strategies, such as grazing with sheep, can reduce the use of mowing equipment onsite and therefore the compaction that may result from using this equipment.[28] Furthermore, livestock grazing works to cycle nutrients in the pasture ecosystem onsite and improve the soil.

  1. ^ Joseph Hudyncia, North Carolina Department of Agriculture and Consumer Services, personal communication, July 8, 2017.
  2. ^ Brock Phillips, Sun-Raised Farms, personal communication, June 21, 2017.
NC State Credit