4. Fire Safety

The possibility of fires resulting from or intensified by PV systems may trigger concern among the general public as well as among firefighters. However, concern over solar fire hazards should be limited because only a small portion of materials in the panels are flammable, and those components cannot self-support a significant fire. Flammable components of PV panels include the thin layers of polymer encapsulates surrounding the PV cells, polymer backsheets (framed panels only), plastic junction boxes on rear of panel, and insulation on wiring. The rest of the panel is composed of non-flammable components, notably including one or two layers of protective glass that make up over three quarters of the panel’s weight.

Heat from a small flame is not adequate to ignite a PV panel, but heat from a more intense fire or energy from an electrical fault can ignite a PV panel. 78 One real-world example of this occurred during July 2015 in an arid area of California. Three acres of grass under a thin film PV facility burned without igniting the panels mounted on fixed-tilt racks just above the grass. 79 While it is possible for electrical faults in PV systems on homes or commercial buildings to start a fire, this is extremely rare. 80 Improving understanding of the PV-specific risks, safer system designs, and updated fire-related codes and standards will continue to reduce the risk of fire caused by PV systems.

PV systems on buildings can affect firefighters in two primary ways, 1) impact their methods of fighting the fire, and 2) pose safety hazard to the firefighters. One of the most important techniques that firefighters use to suppress fire is ventilation of a building’s roof. This technique allows superheated toxic gases to quickly exit the building. By doing so, the firefighters gain easier and safer access to the building, Ventilation of the roof also makes the challenge of putting out the fire easier. However, the placement of rooftop PV panels may interfere with ventilating the roof by limiting access to desired venting locations.

New solar-specific building code requirements are working to minimize these concerns. Also, the latest National Electric Code has added requirements that make it easier for first responders to safely and effectively turn off a PV system. Concern for firefighting a building with PV can be reduced with proper fire fighter training, system design, and installation. Numerous organizations have studied fire fighter safety related to PV. Many organizations have published valuable guides and training programs. Some notable examples are listed below.

  1. ^ Hong-Yun Yang, et. al. Experimental Studies on the Flammability and Fire Hazards of Photovoltaic Modules, Materials. July 2015. Accessed August 2016. http://www.mdpi.com/1996-1944/8/7/4210/pdf
  2. ^ Matt Fountain. The Tribune. Fire breaks out at Topaz Solar Farm . July 2015. Accessed August 2016. www.sanluisobispo.com/news/local/article39055539.html
  3. ^ Cooperative Research Network. Matthew Paiss. Tech Surveillance: PV Safety & Code Developments . October 2014. Accessed August 2016. http://www.nreca.coop/wp-content/uploads/2013/06/ts_pv_fire_safety_oct_…
NC State Credit