Material Recovery

1.2.3 Panel End-of-Life Management

Concerns about the volume, disposal, toxicity, and recycling of PV panels are addressed in this subsection. To put the volume of PV waste into perspective, consider that by 2050, when PV systems installed in 2020 will reach the end of their lives, it is estimated that the global annual PV panel waste tonnage will be 10% of the 2014 global e-waste tonnage. 40 In the U.S., end-of-life disposal of solar products is governed by the Federal Resource Conservation and Recovery Act (RCRA), as well as state policies in some situations. RCRA separates waste into hazardous (not accepted at ordinary landfill) and solid waste (generally accepted at ordinary landfill) based on a series of rules. According to RCRA, the way to determine if a PV panel is classified as hazardous waste is the Toxic Characteristic Leaching Procedure (TCLP) test. This EPA test is designed to simulate landfill disposal and determine the risk of hazardous substances leaching out of the landfill. 41 , 42, 43 Multiple sources report that most modern PV panels (both crystalline silicon and cadmium telluride) pass the TCLP test. 44 , 45 Some studies found that some older (1990s) crystalline silicon panels, and perhaps some newer crystalline silicon panels (specifics are not given about vintage of panels tested), do not pass the lead (Pb) leachate limits in the TCLP test. 46 , 47

The test begins with the crushing of a panel into centimeter-sized pieces. The pieces are then mixed in an acid bath. After tumbling for eighteen hours, the fluid is tested for forty hazardous substances that all must be below specific threshold levels to pass the test. Research comparing TCLP conditions to conditions of damaged panels in the field found that simulated landfill conditions provide overly conservative estimates of leaching for field-damaged panels. 48 Additionally, research in Japan has found no detectable Cd leaching from cracked CdTe panels when exposed to simulated acid rain. 49

Although modern panels can generally be landfilled, they can also be recycled. Even though recent waste volume has not been adequate to support significant PV-specific recycling infrastructure, the existing recycling industry in North Carolina reports that it recycles much of the current small volume of broken PV panels. In an informal survey conducted by the NC Clean Energy Technology Center survey in early 2016, seven of the eight large active North Carolina utility-scale solar developers surveyed reported that they send damaged panels back to the manufacturer and/or to a local recycler. Only one developer reported sending damaged panels to the landfill.

The developers reported at that time that they are usually paid a small amount per panel by local recycling firms. In early 2017, a PV developer reported that a local recycler was charging a small fee per panel to recycle damaged PV panels. The local recycling firm known to authors to accept PV panels described their current PV panel recycling practice as of early 2016 as removing the aluminum frame for local recycling and removing the wire leads for local copper recycling. The remainder of the panel is sent to a facility for processing the non-metallic portions of crushed vehicles, referred to as “fluff” in the recycling industry. 50 This processing within existing general recycling plants allows for significant material recovery of major components, including glass which is 80% of the module weight, but at lower yields than PV-specific recycling plants. Notably almost half of the material value in a PV panel is in the few grams of silver contained in almost every PV panel produced today. In the long-term, dedicated PV panel recycling plants can increase treatment capacities and maximize revenues resulting in better output quality and the ability to recover a greater fraction of the useful materials. 51 PV-specific panel recycling technologies have been researched and implemented to some extent for the past decade, and have been shown to be able to recover over 95% of PV material (semiconductor) and over 90% of the glass in a PV panel. 52

A look at global PV recycling trends hints at the future possibilities of the practice in our country. Europe installed MW-scale volumes of PV years before the U.S. In 2007, a public-private partnership between the European Union and the solar industry set up a voluntary collection and recycling system called PV CYCLE. This arrangement was later made mandatory under the EU’s WEEE directive, a program for waste electrical and electronic equipment. 53 Its member companies (PV panel producers) fully finance the association. This makes it possible for end-users to return the member companies’ defective panels for recycling at any of the over 300 collection points around Europe without added costs. Additionally, PV CYCLE will pick up batches of 40 or more used panels at no cost to the user. This arrangement has been very successful, collecting and recycling over 13,000 tons by the end of 2015. 54

In 2012, the WEEE Directive added the end-of-life collection and recycling of PV panels to its scope. 55 This directive is based on the principle of extended-producer-responsibility. It has a global impact because producers that want to sell into the EU market are legally responsible for end-of-life management. Starting in 2018, this directive targets that 85% of PV products “put in the market” in Europe are recovered and 80% is prepared for reuse and recycling.

The success of the PV panel collection and recycling practices in Europe provides promise for the future of recycling in the U.S. In mid-2016, the US Solar Energy Industry Association (SEIA) announced that they are starting a national solar panel recycling program with the guidance and support of many leading PV panel producers. 56 The program will aggregate the services offered by recycling vendors and PV manufacturers, which will make it easier for consumers to select a cost-effective and environmentally responsible end-of-life management solution for their PV products. According to SEIA, they are planning the program in an effort to make the entire industry landfill-free. In addition to the national recycling network program, the program will provide a portal for system owners and consumers with information on how to responsibly recycle their PV systems.

While a cautious approach toward the potential for negative environmental and/or health impacts from retired PV panels is fully warranted, this section has shown that the positive health impacts of reduced emissions from fossil fuel combustion from PV systems more than outweighs any potential risk. Testing shows that silicon and CdTe panels are both safe to dispose of in landfills, and are also safe in worst case conditions of abandonment or damage in a disaster. Additionally, analysis by local engineers has found that the current salvage value of the equipment in a utility scale PV facility generally exceeds general contractor estimates for the cost to remove the entire PV system. 57 , 58 , 59

Cadmium Telluride (CdTe) PV Panels

This subsection examines the components of a cadmium telluride (CdTe) PV panel. Research demonstrates that they pose negligible toxicity risk to public health and safety while significantly reducing the public’s exposure to cadmium by reducing coal emissions. As of mid-2016, a few hundred MWs of cadmium telluride (CdTe) panels, all manufactured by the U.S. company First Solar, have been installed in North Carolina.

Questions about the potential health and environmental impacts from the use of this PV technology are related to the concern that these panels contain cadmium, a toxic heavy metal. However, scientific studies have shown that cadmium telluride differs from cadmium due to its high chemical and thermal stability. 18 Research has shown that the tiny amount of cadmium in these panels does not pose a health or safety risk. 19 Further, there are very compelling reasons to welcome its adoption due to reductions in unhealthy pollution associated with burning coal. Every GWh of electricity generated by burning coal produces about 4 grams of cadmium air emissions. 20 Even though North Carolina produces a significant fraction of our electricity from coal, electricity from solar offsets much more natural gas than coal due to natural gas plants being able to adjust their rate of production more easily and quickly. If solar electricity offsets 90% natural gas and 10% coal, each 5-megawatt (5 MWAC, which is generally 7 MWDC) CdTe solar facility in North Carolina keeps about 157 grams, or about a third of a pound, of cadmium out of our environment. 21 , 22

Cadmium is toxic, but all the approximately 7 grams of cadmium in one CdTe panel is in the form of a chemical compound cadmium telluride, 23 which has 1/100th the toxicity of free cadmium. 24 Cadmium telluride is a very stable compound that is non-volatile and non-soluble in water. Even in the case of a fire, research shows that less than 0.1% of the cadmium is released when a CdTe panel is exposed to fire. The fire melts the glass and encapsulates over 99.9% of the cadmium in the molten glass. 25

It is important to understand the source of the cadmium used to manufacture CdTe PV panels. The cadmium is a byproduct of zinc and lead refining. The element is collected from emissions and waste streams during the production of these metals and combined with tellurium to create the CdTe used in PV panels. If the cadmium were not collected for use in the PV panels or other products, it would otherwise either be stockpiled for future use, cemented and buried, or disposed of. 26 Nearly all the cadmium in old or broken panels can be recycled which can eventually serve as the primary source of cadmium for new PV panels. 27

Similar to silicon-based PV panels, CdTe panels are constructed of a tempered glass front, one instead of two clear plastic encapsulation layers, and a rear heat strengthened glass backing (together >98% by weight). The final product is built to withstand exposure to the elements without significant damage for over 25 years. While not representative of damage that may occur in the field or even at a landfill, laboratory evidence has illustrated that when panels are ground into a fine powder, very acidic water is able to leach portions of the cadmium and tellurium, 28 similar to the process used to recycle CdTe panels. Like many silicon-based panels, CdTe panels are reported (as far back ask 1998 29) to pass the EPA’s Toxic Characteristic Leaching Procedure (TCLP) test, which tests the potential for crushed panels in a landfill to leach hazardous substances into groundwater. 30 Passing this test means that they are classified as non-hazardous waste and can be deposited in landfills. 31 , 32 For more information about PV panel end-of-life, see the Panel Disposal section.

There is also concern of environmental impact resulting from potential catastrophic events involving CdTe PV panels. An analysis of worst-case scenarios for environmental impact from CdTe PV panels, including earthquakes, fires, and floods, was conducted by the University of Tokyo in 2013. After reviewing the extensive international body of research on CdTe PV technology, their report concluded, “Even in the worst-case scenarios, it is unlikely that the Cd concentrations in air and sea water will exceed the environmental regulation values.” 33 In a worst-case scenario of damaged panels abandoned on the ground, insignificant amounts of cadmium will leach from the panels. This is because this scenario is much less conducive (larger module pieces, less acidity) to leaching than the conditions of the EPA’s TCLP test used to simulate landfill conditions, which CdTe panels pass. 34

First Solar, a U.S. company, and the only significant supplier of CdTe panels, has a robust panel take-back and recycling program that has been operating commercially since 2005. 35 The company states that it is “committed to providing a commercially attractive recycling solution for photovoltaic (PV) power plant and module owners to help them meet their module (end of life) EOL obligation simply, cost-effectively and responsibly.” First Solar global recycling services to their customers to collect and recycle panels once they reach the end of productive life whether due to age or damage. These recycling service agreements are structured to be financially attractive to both First Solar and the solar panel owner. For First Solar, the contract provides the company with an affordable source of raw materials needed for new panels and presumably a diminished risk of undesired release of Cd. The contract also benefits the solar panel owner by allowing them to avoid tipping fees at a waste disposal site. The legal contract helps provide peace of mind by ensuring compliance by both parties when considering the continuing trend of rising disposal costs and increasing regulatory requirements.

1.2.1 Solar Panels: Construction and Durability

Solar PV panels typically consist of glass, polymer, aluminum, copper, and semiconductor materials that can be recovered and recycled at the end of their useful life. 2 Today there are two PV technologies used in PV panels at utility-scale solar facilities, silicon, and thin film. As of 2016, all thin film used in North Carolina solar facilities are cadmium telluride (CdTe) panels from the US manufacturer First Solar, but there are other thin film PV panels available on the market, such as Solar Frontier’s CIGS panels. Crystalline silicon technology consists of silicon wafers which are made into cells and assembled into panels, thin film technologies consist of thin layers of semiconductor material deposited onto glass, polymer or metal substrates. While there are differences in the components and manufacturing processes of these two types of solar technologies, many aspects of their PV panel construction are very similar. Specifics about each type of PV chemistry as it relates to toxicity are covered in subsections a, b, and c in section 1.2.2; on crystalline silicon, cadmium telluride, and CIS/CIGS respectively. The rest of this section applies equally to both silicon and thin film panels.

Components of silicon solar panels
Figure 2: Components of crystalline silicon panels. The vast majority of silicon panels consist of a glass sheet on the topside with an aluminum frame providing structural support. Image Source:


Anatomy of a Thin PV Cell
Figure 3: Layers of a common frameless thin-film panel (CdTe). Many thin film panels are frameless, including the most common thin-film panels, First Solar’s CdTe. Frameless panels have protective glass on both the front and back of the panel. Layer thicknesses not to scale. Image Source:


To provide decades of corrosion-free operation, PV cells in PV panels are encapsulated from air and moisture between two layers of plastic. The encapsulation layers are protected on the top with a layer of tempered glass and on the backside with a polymer sheet. Frameless modules include a protective layer of glass on the rear of the panel, which may also be tempered. The plastic ethylene-vinyl acetate (EVA) commonly provides the cell encapsulation. For decades, this same material has been used between layers of tempered glass to give car windshields and hurricane windows their great strength. In the same way that a car windshield cracks but stays intact, the EVA layers in PV panels keep broken panels intact (see Figure 4). Thus, a damaged module does not generally create small pieces of debris; instead, it largely remains together as one piece.

Figure 4: The mangled PV panels in this picture illustrate the nature of broken solar panels; the glass cracks but the panel is still in one piece. Image Source:

PV panels constructed with the same basic components as modern panels have been installed across the globe for well over thirty years. 3 The long-term durability and performance demonstrated over these decades, as well as the results of accelerated lifetime testing, helped lead to an industry-standard 25-year power production warranty for PV panels. These power warranties warrant a PV panel to produce at least 80% of their original nameplate production after 25 years of use. A recent SolarCity and DNV GL study reported that today’s quality PV panels should be expected to reliably and efficiently produce power for thirty-five years. 4


Local building codes require all structures, including ground mounted solar arrays, to be engineered to withstand anticipated wind speeds, as defined by the local wind speed requirements. Many racking products are available in versions engineered for wind speeds of up to 150 miles per hour, which is significantly higher than the wind speed requirement anywhere in North Carolina. The strength of PV mounting structures were demonstrated during Hurricane Sandy in 2012 and again during Hurricane Matthew in 2016. During Hurricane Sandy, the many large-scale solar facilities in New Jersey and New York at that time suffered only minor damage. 5 In the fall of 2016, the US and Caribbean experienced destructive winds and torrential rains from Hurricane Matthew, yet one leading solar tracker manufacturer reported that their numerous systems in the impacted area received zero damage from wind or flooding. 6


In the event of a catastrophic event capable of damaging solar equipment, such as a tornado, the system will almost certainly have property insurance that will cover the cost to cleanup and repair the project. It is in the best interest of the system owner to protect their investment against such risks. It is also in their interest to get the project repaired and producing full power as soon as possible. Therefore, the investment in adequate insurance is a wise business practice for the system owner. For the same reasons, adequate insurance coverage is also generally a requirement of the bank or firm providing financing for the project.


If land used for a solar facility is to be returned to agricultural use in the future, it will be necessary to remove the solar equipment from the land. This process is known as decommissioning. Decommissioning is basically the construction process in reverse; it involves removal of the solar panels, breakup of support pads, removal of access roads, replacement of any displaced soil, and revegetation.

Solar development often takes place on leased land, although it also occurs on land owned by solar companies. When leased land is involved, it must be determined whether the landowner or the solar developer bears responsibility for decommissioning. Responsibilities for decommissioning are lease-specific in North Carolina. It is important for landowners to consider decommissioning when setting lease terms, although landowners may choose in some cases to accept decommissioning responsibility themselves. Although state rules on solar decommissioning do not currently exist in North Carolina, local jurisdictions can choose to adopt regulations pertaining to decommissioning.

The materials recovered in the decommissioning process have significant economic value, which can help pay for the costs of decommissioning. Some engineering analyses have indicated that the salvage value of recovered materials is more than enough to pay for the removal of all the materials and to return the site to its pre-construction state.[56],[57],[58],[59]

NCSU has produced several resources that provide more information on decommissioning. They include: